Wednesday, 7 December 2016

Astronomy - Google honors Ole Rømer in Google Doodle

Astronomy - Google honors Ole Rømer in Google Doodle



Today’s Google homepage pays homage to the first man who measured the speed of light.
ScreenShot20161207at12.40.08PM
Google
One of the fun aspects about Google is the ever-changing doodle on the homepage, usually relevant to holidays, historical events, and people. Today’s Google Doodle represents Ole Rømer, a Danish astronomer who was the first person to successfully measure the speed of light.

Rømer, along with Galileo, was one of few astronomers who didn’t agree that light speed was infinite. His experiment was much more successful than Galileo’s, though.

While studying Jupiter’s moon Io and its eclipses, he noticed that the time between eclipses varied depending on Earth’s position to Jupiter during its orbit. As Earth drew closer, time between transits became shorter, and when Earth moved away, time between transits became longer.

He knew Earth’s position wouldn’t have an effect on Io’s eclipses, so he continued to research the idea for the next eight years. Rømer and Dutch astronomer Christiaan Huygens tried unsuccessfully to calculate the exact speed of light.

Rømer’s theory wasn’t accepted until about two decades after his death, but was later supported by scientists like Isaac Newton.

Thanks to Rømer’s observations 340 years ago, we now have a method for calculating the distance of stars and galaxies in the Universe, giving us the light year.



Ole Rømer
Ole Rømer (Coning painting).jpg
Ole Rømer, portrait by Jacob Coning from c. 1700
BornOle Christensen Rømer
25 September 1644
ÅrhusDenmark–Norway
Died19 September 1710 (aged 65)
CopenhagenDenmark–Norway
NationalityDanish
FieldsAstronomy
Alma materUniversity of Copenhagen
Known forspeed of light
Signature
Ole Christensen Rømer (Danish pronunciation: [ˈo(ː)lə ˈʁœːˀmɐ]; 25 September 1644 – 19 September 1710) was a Danish astronomer who in 1676 made the first quantitative measurements of the speed of light. Rømer also invented the modern thermometer showing the temperature between two fixed points, namely the points at which water respectively boils and freezes. In scientific literature alternative spellings such as "Roemer", "Römer", or "Romer" are common.

General biographyEdit

Rundetårn, or round tower, in Copenhagen, on top of which the university had its observatory from the mid 17th century until the mid 19th century, when it was moved to new premises. The current observatory there was built in the 20th century to serve amateurs.
Rømer was born on 25 September 1644 in Århus to a merchant and skipper, Christen Pedersen (died 1663), and Anna Olufsdatter Storm (c. 1610-1690), daughter of a well-to-do alderman. Since 1642, Christen Pedersen had taken to using the name Rømer, which means that he was from the Danish island of Rømø, to distinguish himself from a couple of other people named Christen Pedersen. There are few records of Ole Rømer before 1662, when he graduated from the old Aarhus Katedralskole (the Cathedral school of Aarhus), moved to Copenhagen and matriculated at the University of Copenhagen. His mentor at the University was Rasmus Bartholin, who published his discovery of the double refraction of a light ray by Iceland spar (calcite) in 1668, while Rømer was living in his home. Rømer was given every opportunity to learn mathematics and astronomy using Tycho Brahe's astronomical observations, as Bartholin had been given the task of preparing them for publication.
Rømer was employed by the French government: Louis XIV made him tutor for the Dauphin, and he also took part in the construction of the magnificent fountains at Versailles.
In 1681, Rømer returned to Denmark and was appointed professor of astronomyat the University of Copenhagen, and the same year he married Anne Marie Bartholin, the daughter of Rasmus Bartholin. He was active also as an observer, both at the University Observatory at Rundetårn and in his home, using improved instruments of his own construction. Unfortunately, his observations have not survived: they were lost in the great Copenhagen Fire of 1728. However, a former assistant (and later an astronomer in his own right), Peder Horrebow, loyally described and wrote about Rømer's observations.
In Rømer's position as royal mathematician, he introduced the first national system for weights and measures in Denmark on 1 May 1683. Initially based on the Rhine foot, a more accurate national standard was adopted in 1698. Later measurements of the standards fabricated for length and volume show an excellent degree of accuracy. His goal was to achieve a definition based on astronomical constants, using a pendulum. This would happen after his death, practicalities making it too inaccurate at the time. Notable is also his definition of the new Danish mile of 24,000 Danish feet (circa 7,532 m).
In 1700, Rømer persuaded the king to introduce the Gregorian calendar in Denmark-Norway — something Tycho Brahe had argued for in vain a hundred years earlier.
Ole Rømer at work
Rømer developed one of the first temperature scales while convalescing from a broken leg. Fahrenheit visited him in 1708 and improved on the Rømer scale, the result being the familiar Fahrenheit temperature scale still in use today in a few countries.
Rømer also established navigation schools in several Danish cities.
In 1705, Rømer was made the second Chief of the Copenhagen Police, a position he kept until his death in 1710. As one of his first acts, he fired the entire force, being convinced that the morale was alarmingly low. He was the inventor of the first street lights (oil lamps) in Copenhagen, and worked hard to try to control the beggars, poor people, unemployed, and prostitutes of Copenhagen.
In Copenhagen, Rømer made rules for building new houses, got the city's water supply and sewers back in order, ensured that the city's fire department got new and better equipment, and was the moving force behind the planning and making of new pavement in the streets and on the city squares.
Rømer died at the age of 65 in 1710.

Rømer and the speed of lightEdit

The determination of longitude is a significant practical problem in cartography and navigationPhilip III of Spain offered a prize for a method to determine the longitude of a ship out of sight of land, and Galileo proposed a method of establishing the time of day, and thus longitude, based on the times of the eclipses of the moons of Jupiter, in essence using the Jovian system as a cosmic clock; this method was not significantly improved until accurate mechanical clocks were developed in the eighteenth century. Galileo proposed this method to the Spanish crown (1616–1617) but it proved to be impractical, because of the inaccuracies of Galileo's timetables and the difficulty of observing the eclipses on a ship. However, with refinements the method could be made to work on land.
After studies in Copenhagen, Rømer joined the observatory of Uraniborg on the island of Hven, near Copenhagen, in 1671. Over a period of several months, Jean Picard and Rømer observed about 140 eclipses of Jupiter's moon Io, while in Paris Giovanni Domenico Cassiniobserved the same eclipses. By comparing the times of the eclipses, the difference in longitude of Paris to Uranienborg was calculated.
Cassini had observed the moons of Jupiter between 1666 and 1668, and discovered discrepancies in his measurements that, at first, he attributed to light having a finite speed. In 1672 Rømer went to Paris and continued observing the satellites of Jupiter as Cassini's assistant. Rømer added his own observations to Cassini's and observed that times between eclipses (particularly those of Io) got shorter as Earth approached Jupiter, and longer as Earth moved farther away. Cassini made an announcement to the Academy of Sciences on 22 August 1676:
This second inequality appears to be due to light taking some time to reach us from the satellite; light seems to take about ten to eleven minutes [to cross] a distance equal to the half-diameter of the terrestrial orbit.
Illustration from the 1676 article on Rømer's measurement of the speed of light. Rømer compared the duration of Io's orbits as Earth moved towards Jupiter (F to G) and as Earth moved away from Jupiter (L to K).
Oddly, Cassini seems to have abandoned this reasoning, which Rømer adopted and set about buttressing in an irrefutable manner, using a selected number of observations performed by Picard and himself between 1671 and 1677. Rømer presented his results to the French Academy of Sciences, and it was summarised soon after by an anonymous reporter in a short paper, Démonstration touchant le mouvement de la lumière trouvé par M. Roemer de l'Académie des sciences, published 7 December 1676 in the Journal des sçavans. Unfortunately the paper bears the stamp of the reporter failing to understand Rømer's presentation, and as the reporter resorted to cryptic phrasings to hide his lack of understanding, he obfuscated Rømer's reasoning in the process. Unfortunately Rømer himself never published his results.
Assume the Earth is in L, at the second quadrature with Jupiter (i.e. ALB is 90°), and Io emerges from D. After several orbits of Io, at 42.5 hours per orbit, the Earth is in K. Rømer reasoned that if light is not propagated instantaneously, the additional time it takes to reach K, that he reckoned about 3½ minutes, would explain the observed delay. Rømer observed immersions in C from the symmetric positions F and G, to avoid confusing eclipses (Io shadowed by Jupiter from C to D) and occultations(Io hidden behind Jupiter at various angles). In the table below, his observations in 1676, including the one on August 7, believed to be in opposition H, and the one observed at Paris Observatory to be 10 minutes late, on November 9.
The eclipses of Io recorded by Rømer in 1676
Time is normalized (hours since midnight rather than since noon); values on even rows are calculated from the original data.
MonthDayTimeTideorbitsaverage (hours)
June132:49:42C
2,750,789s1842.45
May1322:56:11C
4,747,719s3142.54
Aug721:44:50D
612,065s442.50
Aug1423:45:55D
764,718s542.48
Aug2320:11:13D
6,906,272s4542.63
Nov917:35:45D
By trial and error, during eight years of observations Rømer worked out how to account for the retardation of light when reckoning the ephemeris of Io. He calculated the delay as a proportion of the angle corresponding to a given Earth's position with respect to Jupiter, Δt = 22·(α180°)[minutes]. When the angle α is 180° the delay becomes 22 minutes, which may be interpreted as the time necessary for the light to cross a distance equal to the diameter of the Earth's orbit, H to E.  (Actually, Jupiter is not visible from the conjunction point E.) That interpretation makes it possible to calculate the strict result of Rømer's observations: The ratio of the speed of light to the speed with which Earth orbits the sun, which is the ratio of the duration of a year divided by pi as compared to the 22 minutes
365·24·60π·22 ≈ 7,600.
In comparison the modern value is circa 299,792 km s−129.8 km s−1 ≈ 10,100.
Rømer neither calculated this ratio, nor did he give a value for the speed of light. However, many others calculated a speed from his data, the first being Christiaan Huygens; after corresponding with Rømer and eliciting more data, Huygens deduced that light travelled 16 23 Earth diameters per second.
Rømer's view that the velocity of light was finite was not fully accepted until measurements of the so-called aberration of light were made by James Bradley in 1727.
In 1809, again making use of observations of Io, but this time with the benefit of more than a century of increasingly precise observations, the astronomer Jean Baptiste Joseph Delambre reported the time for light to travel from the Sun to the Earth as 8 minutes and 12 seconds. Depending on the value assumed for the astronomical unit, this yields the speed of light as just a little more than 300,000 kilometres per second. The modern value is 8 minutes and 19 seconds, and a speed of 299,792.458 km/s.
A plaque at the Observatory of Paris, where the Danish astronomer happened to be working, commemorates what was, in effect, the first measurement of a universal quantity made on this planet.





No comments: